Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone.
نویسندگان
چکیده
Mechanical properties of bones are largely determined by their microstructure. The latter comprises a large number of diverse pores. The present paper analyzes a connection between structure of the porous space of the osteonal cortical bone and bone's overall anisotropic elastic moduli. The analysis is based on recent developments in the theory of porous materials that predict the anisotropic effective moduli of porous solids in terms of pores' shapes, orientations and densities. Bone's microstructure is modeled using available micrographs. The calculated anisotropic elastic constants for porous cortical bone are, mostly, in agreement with available experimental data. The influence of each of the pore types on the overall moduli is examined. The results of the analysis can also be used to estimate the extent of mineralization (hydroxyapatite content) if the overall porosity and the effective moduli are known and, vice versa, to estimate porosity from the measured moduli and the extent of mineralization.
منابع مشابه
Elastic characterization of porous bone by ultrasonic method through Lamb waves
The object of this research is to characterize the porous bones by an ultrasonic method using Lamb waves. In recent years, the characterization of such materials has attracted many authors and takes a perfect place in the field of medicine. It requires the development of more efficient technology for getting the necessary quality and security. This paper aims to exploits the dispersion curves o...
متن کاملMicrostructure, in Vitro Corrosion and Mechanical Properties of porous Magnesium-Zinc Nanocomposite Scaffolds
Due to good biocompatibility, corrosion and mechanical properties, magnesium (Mg) is considered promising degradable material for orthopedic applications. In this work, Mg-MgZnx (x= 1, 2, 3 and 4) nanocomposites scaffolds with different porosities were synthesized via powder metallurgy method. The microstructure, composition, in vitro corrosion and mechanical properties of porous magnesium-zinc...
متن کاملA polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micromechanical Investigation
The application of porous bio-nanocomposites polymer has greatly increased in the treatment of boneabnormalities and bone fracture. Therefore, predicting the mechanical properties of these bio-nanocompositesare very important prior to their fabrication. Investigation of mechanical properties like (elasticmodulus and hardness) is very costly and time-consuming in experimental t...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering
In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...
متن کاملHeterogeneity of bone lamellar-level elastic moduli.
Advances in our ability to assess fracture risk, predict implant success, and evaluate new therapies for bone metabolic and remodeling disorders depend on our understanding of anatomically specific measures of local tissue mechanical properties near and surrounding bone cells. Using nanoindentation, we have quantified elastic modulus and hardness of human lamellar bone tissue as a function of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 33 7 شماره
صفحات -
تاریخ انتشار 2000